Chemo-sensitivity of Two-dimensional Monolayer and Three-dimensional Spheroid of Breast Cancer MCF-7 Cells to Daunorubicin, Docetaxel, and Arsenic Disulfide.

Uematsu N1, Zhao Y1,2, Kiyomi A3, Yuan BQ4, Onda K1, Tanaka S1, Sugiyama K1, Sugiura M3, Takagi N4, Hayakawa A5, Hirano T6.

Author information

Abstract

BACKGROUND/AIM:
Chemo-sensitivity of two-dimensional (2D) monolayers and three-dimensional (3D) spheroids of human breast cancer MCF-7 cells were investigated.

MATERIALS AND METHODS:
MCF-7 cells were cultured in monolayers or spheroids established using a thermo-reversible gelatin polymer, in the presence of daunorubicin, docetaxel, or As2S2. Cell proliferation was examined by a Cell Counting Kit-8 assay.

RESULTS:
Daunorubicin, docetaxel, and As2S2 dose-dependently decreased the MCF-7 cell proliferation in both 2D- and 3D-culture systems. The 3D spheroids were less sensitive to these agents than the 2D cultured cells. Verapamil, an inhibitor of P-glycoprotein, partially enhanced the antiproliferative effects of the agents. DL-buthionine-(S, R)-sulfoximine significantly increased (p<0.05), while
N-acetyl-L-cysteine significantly inhibited the antiproliferative effects of As₂S₂ (p<0.003).

CONCLUSION:
The 3D spheroids showed less sensitivity to the antiproliferative efficacies of anticancer agents than the 2D cultured cells. P-Glycoprotein is suggested to be partially implicated in drug resistance. Reduction of cellular glutathione level enhanced the As₂S₂ cytotoxicity.

Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

KEYWORDS:
2D monolayer; 3D spheroid; Daunorubicin; arsenic disulfide; breast cancer MCF-7 cells; docetaxel